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Abstract

The problem of the kinetics of non-isothermal crystallisation is analysed both from a theoretical and experimental point of view. The most
common equations used to describe the kinetics of non-isothermal crystallisation—the Nakamura and Ozawa equations—are analysed and
discussed. The Nakamura equation is re-derived without invoking the isokinetic condition, and it is shown that this equation is valid only for
non-isothermal crystallisation with instantaneous nucleation. It is also shown that the Ozawa equation for pre-determined nucleation is
incorrect. A Tobin-type equation for non-isothermal crystallisation with instantaneous nucleation is also derived. The experimental problems
related with the recording of data for this type of crystallisation are also analysed and discussed. As a further test of the validity of the
theoretical models, and as a justification for the use of isothermal crystallisation data to model non-isothermal processes, the (time-
dependent) real sample temperature increase in nominally isothermal experiments was quantified. The isothermal process was then treated
as a truly non-isothermal one, from the (low thermal conductivity) sample’s standpoint.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The practical importance of an accurate description of the
kinetics of non-isothermal crystallisation has been already
stressed in the literature published on this subject [1].
Several models and modifications have been published
[1–3]. Among the most used and applied are the Nakamura
[4–6] and Ozawa equations [7].

The Nakamura equation is a modification of the
Komolgorrof [8]–Avrami [9–11]–Evans [12] equations
for isothermal crystallisation. In order to apply Avrami’s
equation to non-isothermal crystallisation kinetics,
Nakamura makes use of the “isokinetic” assumption. The
basic idea of this assumption is to allow the extension of the
Avrami equation for sporadic nucleation to non-isothermal
conditions. According to the author, Nakamura’s equation is
valid only within a temperature range where the ratio
between the secondary nucleation growth rate (G(T)) and
the activation frequency of primary nuclei have the same
temperature dependence, i.e. their ratio is constant. For
instantaneous nucleation, the activation frequency is infinite
and therefore the isokinetic assumption is unnecessary and

meaningless. For sporadic nucleation, the assumption is
valid only in the earlier stages of the crystallisation process
and the final equation then obtained is identical to that for
instantaneous nucleation. Below, Nakamura’s equation is
derived without the isokinetic assumption, and it is shown
that the equation is only valid for non-isothermal crystal-
lisation with instantaneous nucleation. A Tobin-type
equation for non-isothermal crystallisation is also
derived.

Concerning the use of these equations, they are generally
expressed as a transformed mass fraction as a function of
time, instead of temperature—the natural variable for non-
isothermal crystallisation. The time is usually set to zero at
the temperature at which the start of the exothermal process
is detected by the device [14,15]. Instead, it should be set at
the time where the thermodynamic or other material’s char-
acteristic melting temperature is reached. The first one is
determined using the standard Hoffman–Weeks plots. Since
some uncertainty might be associated with this temperature,
a material’s melting temperature may be determined experi-
mentally. For this purpose, the experimental procedure uses
first a slow cooling (at 0.1 K/min) followed by melting also
at a low scanning rate, with the instrument adequately
calibrated at that same scanning rate.

Using a reasoning similar to that used by Evans (also
followed later by Nakamura), Ozawa [7] derived equations
for non-isothermal crystallisation with instantaneous and
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sporadic nucleation. Comments on the validity of both
Ozawa equations are made below.

In addition to theoretical considerations concerning the
applicability of the Nakamura and Ozawa equations, some
experimental considerations are indeed important and often
forgotten. The first one, accounted for by most workers, is
related to the determination of the sample’s thermal resis-
tance and the evaluation of its effect on the true sample
temperature. The second one is related to the calibration
on cooling of the DSC. It is generally (even if not explicitly)
assumed that the standard calibration performed on heating is
also valid for cooling experiments, but the temperature (or
time) scale may in fact be affected by large deviations [16,17].

Further, in order to ascertain the validity of the theoretical
models, namely Nakamura’s and Tobin’s equations, they
will also be used with isothermal crystallisation data, to
evaluate the effect of the sample temperature rise due to
the heat released during crystallisation.

2. Theory

2.1. The Nakamura equation

The procedure used here to derive the Nakamura equation
is different from the original one [17].

Considering the nomenclature used by different authors,
it is important to define some important concepts pertaining
to primary nucleation. The nomenclature followed is that
used by Wunderlich [18, Section 5.1.5]. Instantaneous (or
athermal) nucleation implies that all crystals start growing
at the same time. This kind of nucleation is sometimes
indistinctly named heterogeneous or pre-determined. In
fact, this last form of nucleation can be instantaneous (ather-
mal) or sporadic (thermal). In this work, only the instanta-
neous (or athermal) nucleation will be treated. The case of
sporadic nucleation will be treated elsewhere [19].

Let us consider, like in isothermal crystallisation, that�N
is the mean number of potential nuclei existing in a unit
volume of untransformed material. For freely growing
spheres, the mass fraction transformed betweent and t 1
dt is

dX 0 � rs

rl

�N4pr2 dr ; �1�

with r � Gt; whereG is the linear growth rate of the spheres
and r their radius at timet. The above equation may be
written as:

dX 0 � rs

rl

�N4pr2G dt � rs

rl

�N4pr2G
dt
dT

dT; �2�

where dT=dt � _T; is the scanning rate—negative for a cool-
ing scan;r s andr l are the solid and liquid phase densities.

The impingement effect between growth fronts is
accounted for by Avrami as

dX�T� � �1 2 X�T�� dX 0�T�; �3�

where dX(T) is the effective differential increment of the
mass fraction of material transformed to the new (solid,
semi-crystalline) phase. From Eqs. (2) and (3), we haveZX

0

dX
1 2 X

� 4prs
�N

rl

ZT

T0
m

r2G�T 0�
_T

dT 0: �4�

On the left-hand side of Eq. (4), the integral limits are set to
zero andX, respectively, at the start of the crystallisation
process and at the current temperatureT. The lower limit of
the integral in the right-hand side is the thermodynamic
melting temperature, i.e. the exact temperature at which
the crystallisation process may effectively start with prob-
ability $0.

To solve the integral in Eq. (4), it is necessary to express
the radiusr as a function of known variables. Sincer is
related to the linear growth rate of the spheres, it is possible
to write the relation:

r�t� �
Zt

0
G�T� dt �

ZT

T0
m

G�T 0� 1
_T

dT 0 � T 2 T0
m

_T
�G�T�; �5�

where �G�T� is the mean value of the linear growth rate
betweenT and T0

m: The last equality, however, is valid
when (and only when) the temperature scanning rate is
constant.

The introduction of Eqs. (5) into (4) and the solution by
parts of the integral in the right-hand side of this last
equation giveZT

T0
m

r2G�T 0�
_T

dT 0 � r2
ZT

T0
m

G�T 0�
_T

dT 0 2 2
ZT

T0
m

G�T 0�
_T

�
"ZT 0

T0
m

G�T 00�
_T

dT 00
#2

dT 0 � r3

3
: �6�

With the above result, the solution of Eq. (4) is

2ln�1 2 X�T�� � 4prs
�N

3rl
_T3 � �G�T��3�T 2 T0

m�3; �7�

for constant scanning rate, which is the Nakamura–Avrami
equation for non-isothermal crystallisation with instan-
taneous nucleation, but its general form is

X�T� � 1 2 exp 2
ZT

T0
m

Z�T 0� 1
_T

dT 0
� �n� �

; �8�

valid even ifṪ is not constant, wheren is the Avrami index,
with exactly the same physical meaning as the exponent
used in isothermal crystallisation kinetics.Z�T� �
�K�T��1=n; whereK(T) is the kinetic constant of the Avrami
equation. For instantaneous nucleation of spheres,n is 3 and

K�T� � 4prs
�N

3rl
�G�T��3: �9�

All parameters in the above equations have their usual
meanings. In the transport factor ofG(T), both the activa-
tion energy (Up) and the temperature at which the molecular
mobility ceases (T∞) may play important roles, particularly
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in the crystallisation of some slowly crystallising polymers.
It is common practice to write the above factor with a WLF
functionality, i.e.

exp 2
Up

R�T 0 2 T∞�

 !
� exp 2

C1C2

C2 1 T 0 2 Tg

 !
;

whereC1 andC2 are constants [20].

2.2. The Ozawa equation for pre-determined nucleation

According to Ozawa, and using Evans’ formalism, the
mean number of growth fronts that arrive at an arbitrary
point in the melt, for pre-determined nucleation and free
growth of spherical nuclei, is Eq. (18) of Ref. [7],

l�T� � p �N
ZT

T0
m

r2 dr : �10�

Instead, this number should of course be larger by a factor of
4, surely at least for instantaneous nucleation, i.e.

l�T� � 4p �N
ZT

T0
m

r2 dr : �11�

For constant cooling rate, the radius of the sphere at timet is
given by Eq. (2) of Ref. [7],

r�t� �
Zt

t
G dt � 1

_T

ZT

u
G�u 0� du 0 � 1

_T
�R�T�2 R�u��; �12�

with

R�T� �
ZT

T0
m

G�u� du; �13�

whereT is the temperature at the timet, u the temperature at
the timet andTm

0 the thermodynamic melting temperature.
Pre-determined nucleation can be instantaneous or spor-

adic in nature. For instantaneous (athermal) nucleation, all
nuclei become active at the start of the crystallisation
process. In this way, the lower limit in the integral of Eq.
(12) should be set to zero time or at the thermodynamic
melting temperature, and not att andu , respectively. For
the case of pre-determined sporadic nucleation (thermal),
the activation frequency of the nuclei should be accounted
for, and the above procedure does not reflect this fact. It is
shown elsewhere that the Ozawa equation for sporadic
nucleation is also incorrect [17,19].

When the lower limits in the integrals of Eq. (12) are set
to the appropriate values for pre-determined instantaneous
nucleation, i.e.t � 0 andu � T0

m; and using Eqs. (12) and
(13), Eq. (10) may be written as

l�T� � p �N
ZT

T0
m

r2G�u�
_T

du: �14�

This is almost exactly the same as Eq. (4)—the Nakamura
equation for instantaneous nucleation—the only difference
being the factor�4rs=rl�: The absence of the factorfour and
the ratio between the solid and the liquid phase densitiesin

Eq. (10) introduces an error into the calculation of the
surface area of the spherical nuclei. Both quantitatively
and from a strictly physical point of view, this is important.

2.3. Tobin’s equation

The main difference between Tobin’s [21,22] and
Avrami–Evans’ formalisms is the way used to correct for
the impingement between the solid crystalline structures.
Some of the assumptions on which depends the validity of
Avrami’s equation were presented by Wunderlich [18], one
of which is a constant density of the solid (semi-crystalline)
structures, equivalent to assuming that they are compact and
strictly impenetrable. There are several ways of rationalis-
ing a Tobin-like type of behaviour [23,24], other than the
oversimplified original one [21–23], which still remain
open to question [25], but many experiments clearly docu-
ment the possibility of such behaviour [17,23].

In this equation, the effect of the impingement between
solid growth fronts is accounted for by

X�t� � �1 2 X�t��X 0�t�; �15�
where the mass fraction transformed by free growth of
spherical nuclei is

X 0�t� � 4prs
�N

rl

ZT

T0
m

r2G�T 0�
_T

dT 0: �16�

The solution of the last integral by the same procedure used
with Eq. (4), followed by substitution in Eq. (15), yields

X�T�
1 2 X�T� �

4prs
�N

3rl

ZT

T0
m

G�T 0� 1
_T

dT 0
� �3

; �17�

or the general equation

X�T�
1 2 X�T� �

ZT

T0
m

Z�T 0� 1
_T

dT 0
� �n

: �18�

The parameters in the above equation have exactly the same
meaning as those in the Nakamura equation (8).

Both Nakamura’s and Tobin’s equations may be applied
to describe non-isothermal quiescent crystallisation
processes, even when the cooling rate is not constant. It is
only needed to evaluate the temperature variation with time,
calculate its derivative and perform a variable substitution
in the integrals of Eqs. (8) and (18), to change the indepen-
dent variable fromtemperatureto time. Further, the para-
meters used to describe isothermal crystallisation at
different temperatures should also be valid for non-isother-
mal crystallisation.

The procedure for the treatment of non-isothermal results
using isothermal data was summarised by Patel [26]. The
parameters in Nakamura’s and Tobin’s equations are the
exponent,n, the activation energy for transport of polymer
molecules to the secondary nuclei,Up, the temperature at
which the molecular mobility ceases,T∞, (or in alternative
to Up and T∞, C1 and C2), the parameter related with the
folded and extended chain surface energies of the critical
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secondary nuclei,Kg (here independent of the existence of
regime transitions), the pre-exponential factor of the linear
growth rate,Go, the mean number of primary nuclei,�N; and
the ratio between the solid and liquid phase densities.
According to the theory of Lauritzen and Hoffman a general
formula for Kg isKg� cbsseT

0
m/(KBDH), wherec is 4 for

regimes I and II and 2 for regime II, the other parameters
having their usual meaning. From these, the only parameters
that cannot be directly determined from experimental crys-
tallisation data are�N; the ratio between the densities and the
exponentn. For fast crystallising polymers, also the para-
meters of the transport term cannot be accurately measured.
However, they can be estimated from a non-linear fit of the
radial growth rate expression to isothermal spherulite
growth data. For modelling purposes,�N; r s/r l andGo may
be included in an overall pre-exponential factor to be fitted
to the experimental data, andKg andUp may be determined
from isothermal crystallisation data at different tempera-
tures, obtained by DSC (using the half crystallisation
time) or polarised optical microscopy [13].

For a specified cooling rate (constant or variable in time),
it is possible to fit the Nakamura and Tobin equations (Eqs.
(8) and (18)) to non-isothermal data by adjusting only two
parameters–an overall pre-exponential constant (C) and the
exponent (n). Accepted universal values forC1 andC2 are 25
and 30, respectively.

For some materials, where it is only possible to obtain
isothermal crystallisation data in a narrow temperature
range,Kg and Up may be affected by large errors. When
this is the case, those parameters can also be fitted to the
experimental data.

2.4. Description of isothermal crystallisation data with non-
isothermal models

In a scan performed in a differential scanning calorimeter,
there is always a thermal lag between the temperature read
by the temperature sensor and the real sample temperature.
The causes of this thermal lag are the oven, aluminium pan
and sample thermal resistances. When the sample used is a
standard metal, and the DSC is calibrated for a heating
experiment at a specified scanning rate, the above thermal
lag is automatically corrected for. Another correction auto-
matically performed during the calibration for a heating
experiment is the isothermal correction (for zero scanning
rate). So, when a sample other then the calibration standard
is scanned on heating, the only thermal lag that remains to
be corrected is that due to the sample’s characteristics, i.e.
its thermal resistance, which differs from that of the cali-
bration standard used. For a cooling scan, all the above three
corrections need to be carried out [16,17].

In an isothermal or non-isothermal crystallisation experi-
ment, the sample temperature may differ from the tempera-
ture read by the temperature sensor by another factor, in
addition (but also connected) to the sample thermal resis-

tance. The factor in question is the effect of the heat of
crystallisation that is released.

Considering the above factors, the calculation of the true
sample temperature during a crystallisation experiment may
be done by performing a heat balance, such that the differ-
ence between the sample and reference instrument-sensed
input heat fluxes is the sensible heat flux received by the
sample minus the heat flux released within the sample due to
the ongoing crystallisation process [17,27], i.e.

m �Cp
dTt

dt
2 uD _Qu � 1

Rs
�Tm 2 Tt�; �19�

wherem is the sample mass,�Cp the specific heat capacity,
dTt=dt the rate of sample temperature variation andTt andTm

are, respectively, the true sample temperature and the
temperature measured by the sample temperature sensor.
The heat flux released within the sample isuD _Qu �
muDHcudX=dt; whereDHc is the heat of crystallisation and
X the mass fraction transformed at timet. According to
Kriegl and co-workers, the additional effect of the specific
heat capacity and mass of the aluminium pan should also be
considered [28]. Although more correct from a physical
point of view, the sample temperature profile obtained
with this procedure is the same as that obtained with Eq.
(19) [17].

Eq. (19) is a first-order differential equation which can be
numerically solved to find the true sample temperature as a
function of time simultaneously with the degree of liquid to
solid phase conversion. For that, the above equation may be
directly applied to the raw data obtained from the DSC,
DQ�t�; relative to the appropriate crystallisation peak base-
line, or to the integrated transformed mass fraction data,
X(t).

3. Experimental

All the experiments in this work were performed with a
Perkin Elmer DSC-7 in standard mode. Before each scan at
a specified scanning rate, both the temperature and entalphy
calibrations were performed. All cooling scans were
performed with the DSC temperature calibration used for
conventional heating experiments. After the scans, the
sample thermal resistance was determined using the stan-
dard procedure (see below).

The materials analysed were: POM—Delrin 150� �Mw �
70 000; T 0

m � 198:918C; Tg � 281:48C�; PEEK—ICI 450G
� �Mw � 40 000; T0

m � 389:08C; Tg � 1458C), MDPE� �Mw ù
30 000; T0

m � 131:488C; Tg � 281:48C; PE (GPC sample
standard, �Mw � 32 100; �Mw= �Mn � 1:10�: The values for
the thermodynamic melting temperature were calculated
by extrapolation from the experimental values using the
Hoffman and Weeks plot construction. Other values were
taken from manufacturers’ literature or from Refs. [29,30].

Different samples with similar masses were prepared and
analysed, in order to evaluate the homogeneity of the
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materials. Sections of samples crystallised in the DSC at
different scanning rates were cut and analysed by polarised
optical microscopy, to determine the type of nucleation. As
for PEEK, the same grade used in our experiments was
analysed by other authors [30], and it was concluded that
the nucleation is heterogeneous.

For POM at low scanning rates (less than21 K/min) the
nucleation is predominantly instantaneous, but zones where

the boundaries of spherulites are branches of hyperbolae
could be identified. For high scanning rates, the nucleation
is instantaneous and no traces of sporadic nucleation were
found.

For MDPE, it was observed that the nucleation is pre-
dominantly instantaneous and that a large number of colum-
nar type structures are formed both at the bottom and top
surfaces of the sample, as well as in the bulk. For the PE
GPC standard, it was found that the nucleation is mixed, but
predominantly instantaneous, for scanning rates lower than
21 K/min, and instantaneous for higher scanning rates.

4. Results

4.1. Measurements of the sample’s thermal resistance

A common procedure to find the sample’s thermal resis-
tance is as follows [31]. First, a small amount of indium is
placed in an aluminium pan and melted at the scanning rate
that will be used in further experiments. The reciprocal of
the slope of the ascending peak is the thermal resistance of
the oven, aluminium pan and indium sample. Next, a poly-
mer sample with a mass similar to the one that will be
analysed (ideally, exactly the same sample) is flattened to
fit a similar aluminium pan. The indium sample is carefully
taken off from the pan, placed at the top of the polymer
sample, and gently pressed against it; the pan is then sealed
and a new scan carried out. The result of the above experi-
ment over a sample of POM is shown in Fig. 1. The slope of
the ascending part of this new indium peak is different from
the first one as well as the onset. The difference between the
reciprocal of the slopes of the two indium peaks is the
polymer sample’s thermal resistance, which depends mainly
on its mass and shape.

Similar experiments were also performed for other
samples used. As an example, Fig. 2 shows the results for
indium and indium over MDPE and POM samples, at
scanning rates from 1 up to 20 K/min. In all of these curves,
and in order to show the scanning rate dependence of the
values of the thermal resistances, they are subtracted of the
extrapolated values of the sample’s thermal resistance at
zero scanning rate. The results for cooling scans are extra-
polated from the heating scans. A similar behaviour to the
one shown in Fig. 2 was recently found by Richardson for
sapphire discs [32].

The extrapolated zero scanning rate value for indium is
27.22 K/W, which is close to the value indicated by the
instrument’s manufacturer for thethermal resistanceof
theDSC oven and sensors(30 K/W). The thermal resistance
of indium itself is small in comparison with the other ther-
mal resistances involved (Table 1). A variation by a factor
of ten in the indium sample mass yields only a negligible
deviation in the value obtained for the indium thermal
resistance at zero scanning rate. Deviations of less than
10% are obtained if different aluminium pans (hand- or
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Fig. 1. Measurement of the thermal resistance of a polyoxymethylene
sample (thickness� 0.18 mm; area� 13.65 mm2; sample mass� 4.197
mg, sample resistance� 24.72 K/W); indium sample (area� 6.95 mm2,
thickness� 0.08 mm, mass 3.998 mg). Both runs were obtained with the
standard temperature calibration on heating at a scanning rate of 1 K/min.
Solid line—indium. Dashed line—indium over POM.

Fig. 2. Variation of the sample’s thermal resistance with the scanning rate.
The thermal resistances in the ordinate are subtracted from the value extra-
polated to zero scanning rate. Curve (A): thermal resistance of the oven,
aluminium pan and indium, subtracted by 27.22 K/W. Curve (B): all of
curve (A) plus the thermal resistance of MDPE, subtracted by 38.04 K/
W. Curve (C): the same as in (B) but for a POM sample, subtracted by
51.94 K/W. The full squares are experimental data for indium.



press-crimped) are used. Small deformations in the bottom
of the press-crimped pans may be responsible for those
deviations.

The values extrapolated to zero scanning rate for POM
and MDPE are 51.94 and 38.04 K/W, respectively. Follow-
ing the procedure described in Fig. 1, the differences
between these two thermal resistances and 27.22 K/W are
the thermal resistances of POM and MDPE, respectively, at
zero scanning rate (Table 1).

With the small masses used in this work, the sample
thermal resistance is approximately constant for all
scanning rates and consistent with the value calculated
from the tabulated thermal conductivity data. The slopes
of the curves (A) and (C) in Fig. 2 are similar, which indi-
cates that, for the POM sample used, the thermal resistance
varies very little with the scanning rate (POM sample
mass� 4.197 mg, indium mass� 3.998 mg, hand-crimped
aluminium pans). For MDPE—curve (B)—there is a small
increase of the sample’s thermal resistance with the
scanning rate (MDPE sample mass� 5.698 mg, indium
mass� 3.988 mg, press-crimped aluminium pans).

The thermal resistance may also be calculated from the
thermal conductivity by

Rs � e
Ak

; �20�

wheree andA are the thickness and the area of the sample,
respectively, andk its thermal conductivity.

The dimensions of the samples used, their thermal
conductivity, the value calculated by Eq. (20) for the
sample’s thermal resistance and the corresponding experi-
mental values measured by the procedure described
above are shown in Table 1. It may be seen from the
data that the thermal resistance of a relatively thick
indium sample is negligible when compared with the
value measured from the reciprocal of the slope of its
melting peak. For all curves,Rs is linearly extrapolated
to zero scanning rate. The values presented in Table 1
for the thermal conductivity are for 156.68C (the indium
melting temperature); for POM and MDPE, the values
were taken from the materials database of the Moldflow
software package. Presumably, those values are for a
temperature range in the molten state, where the thermal
conductivity of the material does not change significantly.
Furthermore, the values in the table are also coincident
with values found in other Refs. [33,34] for the same
materials but without specification of the measurement
temperature.

The difference between the values calculated for the ther-
mal conductivity and literature values is lower than that
obtained in previous experiments [35] using a similar pro-
cedure. The values measured experimentally for the thermal
resistances of POM and MDPE may be used to calculate
their thermal conductivities at 156.68C. Those values are
0.371 and 0.618 W/K m, respectively. The deviations
between the calculated values and other published data
may be attributed, apart from the errors involved in the
DSC measurements, to differences between the actually
measured sample masses and the values calculated from
the geometrical dimensions and density, at the indium melt-
ing temperature.

4.2. Non-isothermal crystallisation data

As referred to above, all cooling scans were
performed with the standard DSC calibration—onset
melting points of at least two high purity metal stan-
dards at the same heating rate. Since for all materials
and scanning rates used the crystallisation is predomi-
nantly instantaneous, the Nakamura and Tobin equations
(8) and (18), respectively, were applied in order to check for
their accuracy in the description of the crystallisation
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Table 1
Sample thickness (e), area (A) and weight. Indium thermal conductivity at 372.2 K. The POM and MDPE thermal conductivities are (presumably) for the melts.
The value calculated for the thermal resistance from Eq. (20) uses the tabulated thermal conductivity data. The values measured for the thermal conductivity of
POM and MDPE were obtained by the procedure described in Fig. 1

e (mm) A (mm2) Mass (mg) k (W/K m) Rs (K/W) Eq. (20) Rs (K/W)

Indium 0.20 25.03 33.157 76.20 7:946× 1022 –
POM 0.18 20.00 4.197 0.292 31.035 24.72
MDPE 0.22 33.06 5.698 0.420 15.856 10.82

Fig. 3. Non-isothermal crystallisation of POM at scanning rates of21
(A),25 (K),250 (W) and2100 K/min (L). Full symbols are uncorrected
results. Open symbols are for results corrected for the sample’s thermal
resistance (24.72 K/W). Sample mass� 4.328 mg. Dashed line is the fit
obtained by Nakamura equation. Solid line is the fit obtained by Tobin’s
non-isothermal equation. The fits shown were applied over the corrected
data.



process. These equations were applied to the non-isothermal
data with and without the temperature correction for the
sample’s thermal resistance.

The modelling was performed using onlytwo para-
meters: the exponentn and the overall pre-exponential
factor. All other parameters were obtained from a set of
isothermal experiments. The only exception made was for
PEEK. Since this material crystallises very slowly, and the
parameters in the transport term of the linear growth rate
were not determined experimentally, they were allowed to
change within reasonably narrow limits.

The data obtained for non-isothermal crystallisation of
POM, PE, MDPE and PEEK are shown in Figs. 3, 4, 5
and 7, respectively. In each figure, the solid symbols repre-
sent the data as obtained from the usual calibration of the
DSC (calibration on heating). Open symbols represent the
data corrected for the sample’s thermal resistance. Only the
fits to this data are shown.

For POM (Fig. 3), and with the corrected data, values ofn
closer to three were obtained for both models (as expected
for an instantaneous nucleation of spheres). The sum of least
squares (SLS) obtained with the Tobin-type non-isothermal
equation is lower, by approximately one order of magnitude,

in comparison with that obtained with the Nakamura equa-
tion (see Table 2).

Values of all parameters for PE (X(T) curves in Fig. 4),
with corrected and uncorrected data, are shown for compar-
ison in Table 3. The values of the SLS are similar for both
data (corrected and uncorrected). Also for this material,
Tobin’s equation gives a better description of the process,
which becomes more difficult for fractions of transfor-
mation greater than 80%.

The main difference between the results over the uncor-
rected and corrected data is that, with the latter, generally
lower values forn are obtained. For MDPE and PEEK, a
similar behaviour was found concerning the variation ofn
for corrected and uncorrected data. Also for MDPE, both
types of data were modelled with Nakamura’s and Tobin’s
equations and, as may be seen from the data in Fig. 5, the
description of the process is very poor. Values forn between
1 and 2 were obtained with both equations for all scanning
rates. From a physical point of view, such low values can
hardly be explained. One possible cause may be linked with
the microstructure formed. In fact, it has been found (see
Fig. 6) that rows of columnar spherulites are formed in the
middle of the solidified material, between the upper and
lower columnar transcrystalline layers. Since the value
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Fig. 4. Non-isothermal crystallisation of PE at scanning rates of21 (A),25
(K),250 (W) and 2100 K/min (L). Full symbols are for uncorrected
results. Open symbols are for results corrected for the sample thermal
resistance (11.5 K/W). Sample mass� 6.078 mg. Dashed line is the fit
obtained by Nakamura’s equation. Solid line is the fit obtained by Tobin’s
non-isothermal equation. The fits shown were applied over the corrected
data.

Fig. 5. Non-isothermal crystallisation of MDPE at scanning rates of21 (A)
and 220 K/min (W). Full symbols are for uncorrected results. Open
symbols are for results corrected for the sample’s thermal resistance
(23.02 K/W). Sample mass� 10.313 mg. Dashed line is the fit obtained
by Nakamura’s equation. Solid line is the fit obtained by Tobin’s non-
isothermal equation. The fits shown were applied over the corrected data.

Table 2
Values of the parameters and sum of the least squares obtained with Nakamura (8) and Tobin-type (18) equations over the non-isothermal crystallisation data of
POM corrected for the sample thermal resistance

Nakamura Tobin

udT/dtu (K/min) C (min21)1027 n SLS× 10 C (min21) × 1027 n SLS× 100

1 181.41 2.51 0.5 187.95 3.56 0.9
5 211.59 2.41 0.6 217.51 3.08 1.9

10 127.60 2.45 0.8 129.86 3.08 3.6
20 82.64 2.13 2.1 86.64 2.89 7.6
50 3.92 2.42 1.5 16.22 3.19 5.2

100 3.22 3.15 1.1 2.33 4.16 2.5



found forn is an average for the geometry of all crystalline
structures present within the sample, the low dimensionality
of the columnar spherulites may well contribute to the low
values measured. In addition, another possible cause is that
a DSC calibration on cooling (rather than on heating) should
have been used in the experiments or in the data treatment
procedures. This important and difficult problem is, at
present, the subject of much research interest and will be
discussed in a separate report [27].

Concerning the non-isothermal crystallisation of PEEK
(Fig. 7), and since this is a slowly crystallising material,
and the activation energy for transport was not calculated
from the experimental data, two additional parameters were
allowed to change (C1 andC2). Average values obtained for
C1 and C2 are 18 and 111, respectively. Apart the lowest
cooling rate, and with the exception of the last 10% of the
transformation process, the description of the process may
be considered as reasonable. However, a physical meaning
can hardly be found for the parameters obtained with this
description. Concerning the variation ofn, the opposite
behaviour to that found for MDPE was found for PEEK.
Here,n changes from 2.61 at25 K/min to 9.4 at2100 K/
min (higher values are obtained when uncorrected data are

used). Such values are also unacceptable from a physical
point of view. Optical microscopy experiments, performed
on the same material as the one used in these experiments,
show that the crystalline structures have a spherical shape
and that the nucleation is heterogeneous. Values ofn near to
3 are thus expected. The reason for such unexpected beha-
viour also seems to be linked to the need for a proper DSC
calibration on cooling. In fact, it was recently found that
when this calibration is carried out, the values obtained
for n are close to the expected ones [17,27], as a result of
significant temperature shifts relative to the temperatures
measured with the conventional calibration (e.g. 5 K for a
cooling rate of 10 K/min [16] and 30 K for a cooling rate of
100 K/min). Also, better descriptions of the crystallisation
process can, generally, be achieved, as well as a more
consistent variation of the pre-exponential factor with the
cooling rate.

4.3. Non-isothermal modelling of isothermal crystallisation
data

Considering the contribution of the sample’s thermal
resistance and of the heat released during crystallisation,
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Table 3
Parameter values obtained with Tobin’s non-isothermal equation for corrected and uncorrected PE data. The sum of the least squares obtained for eachcase is
also shown. The sample’s thermal resistance used for correcting the data was constant and equal to 11.5 K/W

Uncorrected data Corrected data

udT/dtu (K/min) C (min21) × 1023 n SLS× 10 C (min21) × 1025 n SLS× 10

1 9.89 3.4 1.3 1029 2.9 2.8
5 9.35 3.6 1.5 87 3.0 3.6

10 7.52 3.8 1.7 36 3.1 5.3
20 5.10 3.7 2.2 10 2.5 6.9
50 3.92 5.8 0.6 26 2.6 5.3

100 3.22 9.3 0.3 6.3 4.4 3.7

Fig. 6. Section of a MDPE sample as shown by polarised optical microscopy. Sample crystallised in a DSC at a scanning rate of220 K/min.



the true sample temperature in an isothermal experiment
may be calculated from Eq. (19). The calculations,
performed over results of isothermal crystallisation of
POM, yielded the sample temperature increase during
each experiment, as a function of time [17]. In this way,
an isothermal process may, and indeed should, be consid-
ered as truly non-isothermal and treated as such.

As an additional test of the modelling procedure
presented here, namely the use of isothermal data to
model non-isothermal experiments [17], Nakamura’s and
Tobin’s equations were applied to isothermal data, where
time was substituted by the actual sample temperature
during the experiment. The results of this exercise are
shown for three crystallisation temperatures in Fig. 8 and
Table 4. In Fig. 8, the modelling of data obtained with
Avrami’s equation for isothermal crystallisation is
compared with the modelling obtained with Nakamura’s
equation for non-isothermal crystallisation. If Tobin’s
equation is applied, a similar behaviour is obtained for the
variation of the parameters obtained with the two
approaches, although a better fit to the experimental data
is achieved.

As expected, for lower crystallisation temperatures,
where the sample temperature increase is much more
pronounced (< 2 K), the differences between the fits
obtained with the two approaches (Avrami’s and Naka-
mura’s) are greater. For higher crystallisation temperatures,

the sample temperature increase is small (< 0.2 K), and
identical results are obtained with the two approaches.
The equivalence of the two procedures can be check through
the data of Table 4.

5. Conclusions

It is not physically reasonable to arbitrarily change the
parameters of the Nakamura or Tobin equations to fit non-
isothermal crystallisation kinetics. It was shown, by
polarised optical microscopy, that the parameters of the
linear growth rate expression (namelyKg) are the same—
within experimental errors—for isothermal and non-
isothermal experiments [36]. Physically, there is in fact no
reason why it should not be so. Following the reasoning
used to derive the Nakamura and Tobin equations for instan-
taneous nucleation, the parameters obtained from isother-
mal experiments must be valid to describe non-isothermal
ones.

The procedure used here to correct non-isothermal
crystallisation data (obtained with the calibration on
heating) for the sample’s thermal resistance is as
previously reported in the literature [14], but the resis-
tance is calculated in a different way. However, large
deviations in the temperature scale, especially critical at
high cooling rates, cannot be fully accounted for by the
above procedure, unless a proper calibration on cooling
is performed, followed by the correction for the thermal
resistance. This may well be one of the reasons for the
failure of the modelling process. Another may berelated
with the equations used as, for some cooling rates, the
nucleation is of the mixed type (instantaneous and spora-
dic). In addition, as it happens in isothermal experiments,
two stage crystallisation processes may occur and more
complex equations are then needed. These problems will
be addressed in future reports.
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Fig. 7. Non-isothermal crystallisation of PEEK at scanning rates of25 (A),
250 (W) and2100 K/min (K). Full symbols are for uncorrected results.
Open symbols are for results corrected for the sample’s thermal resistance
(32.45 K/W). Sample mass� 9.987 mg. Solid line is the fit obtained by
Tobin’s non-isothermal equation applied over the corrected data.

Fig. 8. Isothermal crystallisation of POM at temperatures 1498C (A), 1538C
(W) and 1578C (K). Symbols are for experimental data. The solid line shows
the modelling results obtained with Avrami’s equation. The dotted line
represents results obtained with Nakamura’s equation (applied after
accounting for the sample’s temperature variation during crystallisation).

Table 4
Kinetic parameters and Avrami’s exponents obtained for the isothermal
crystallisation of POM at the indicated temperatures, with Avrami’s and
Nakamura’s equations

Avrami Nakamura/Avrami

T (8C) K (s2n) n K (s2n) n

149 4:72× 1023 1.93 1:99× 1022 2.11
153 8:90× 1026 2.78 9:54× 1025 2.91
157 4:16× 1028 2.98 6:58× 1027 3.02
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